SCS139 HW4

Tuesday, February 19, 2013 2:06 PM

Q1

$$i(t) = 8 \cos(500 \pi t - 25^{\circ}) A$$

(a) $I_m = 8 A$
(b) $\omega = 500 \pi t rad/s$
(c) $\omega = 2\pi f \Rightarrow f = \frac{\omega}{2\pi} = \frac{500}{2\pi} = 250 Hz$
(d) $t = 2ms = 2 \times 10^{-3} s$
 $\Rightarrow i(t) = 8 \cos(500\pi t 2 \times 10^{-3} - 25^{\circ}) = 8 \cos(\pi - 25^{\circ})$
 $= 8 \cos(150^{\circ} - 25^{\circ}) = 8 \cos(155^{\circ}) \approx -7.25 A$

Q2

(a)
$$v(t) = 21 \cos (4t + (-15^{\circ})) \vee$$

(b) $i(t) = -8 \sin (10t + 70^{\circ}) mA = 8 \cos (10t + 70^{\circ} - 90^{\circ} + 180^{\circ})$
 $= 8 \cos (10t + 160^{\circ}) mA$
 $(= (8 mA) \cos (10t + 160^{\circ})$
(c) $v(t) = 120 \sin (10t - 50^{\circ}) \vee = 120 \cos (10t - 50^{\circ} - 90^{\circ})$
 $= 120 \cos (10t + (-140^{\circ})) \vee$

$$(d) i(t) = -60 \cos(30t + 10^{\circ}) mA = 60 \cos(30t + 10^{\circ} - 180^{\circ}) mA$$

= 60 cos(30t + (-170°)) mA $-\cos \frac{1}{2}\cos \frac{1}{2}$

Q3 We have two wavelengths λ_1 and λ_2 around 632.8 nm We know that $\frac{\lambda_2 - \lambda_1}{\Delta \lambda} = 0.01$ nm From $c = f\lambda$, we have $f = \frac{c}{\lambda}$ and

1

$$\frac{dr}{d\lambda} = -\frac{c}{\lambda^2}.$$
Therefore, when $\Delta\lambda$ is small,
 $|\Delta f| \approx \frac{c}{\lambda^2} \Delta\lambda \approx 7.5 \text{ GHz}$
 $Q^{4} = 5 \sqrt{m} \Rightarrow B_m = \frac{E_m}{c} \approx 1.67 \times 10^{-7} \text{ T}$
 $c = \frac{E_m}{B_m}$